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A non-linear theory of turbulence onset in a shear flow 
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Turbulence onset is considered in viscous incompressible flows, Development of 
fluctuations in an infinite flow with a constant gradient of mean velocity 
aUl/ax2 = comt., U2 = U, 5 0 is rigorously treated. 

It is shown that two-dimensional eddy fluctuations, with infinitesimal initial 
amplitude A and scale of initial eddies 1, increase in this flow so that the maximum 
ratio maxs(t)/e(O) of their energy at the moment t to the initial energy exceeds 
any prescribed value as the Reynolds number R = (aU1/ax2) 12/v increases. The 
analysis of the non-linear equations obtained in the paper which describe 
development of fluctuations with a finite amplitude leads to the conclusion that 
there existsa ' stability barrier ' B(R) for the initial amplitude of eddy fluctuations. 
If A < A"(R), then fluctuations decay as t + co, and if A > A(R) the energy of 
fluctuations does not decay. As R 3 co, B(R)  + 0 according to the inequalities 

z(au,/ax2) K , / R Q  G A"@) G i(au,/ax,) K J R ~ .  

It is shown that the non-linear mechanism of preventing turbulence from decay 
involves generation of large-scale turbulent oscillations which then transmit 
energy to small-scale motions. 

The described mechanism of turbulence onset from small eddies in shear flows 
appears to be of universal character. It is interesting that several qualitative 
characteristics of turbulence observed in various shear flows can be rigorously 
deduced even in a model where disturbances remain two-dimensional. 
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1. Development of disturbances with an infinitesimal initial amplitude 
Onset, development and maintenance of turbulence in a viscous incompressible 

fluid are caused by the energy of an averaged flow and external random effects. 
Investigation of the mechanism of onset and development of turbulence demands 
therefore consideration of non-uniform turbulent flows. 

The Navier-Stokes equations of motion may be written in the form 

Here U(x, t )  = v(x, t )  is the averaged value of the true velocity 

v(x, t )  = U(x, t )  4- u(x, t ) ;  

the bar denotes mathematical expectation; summation is carried out over 
repeated subscripts. 

The velocity of averaged motion U(x, t)  and correlation function of turbulent 
fluctuations bij(x, x', t )  = ui(x, t )  uj(x', t) are main properties of the flow. 

If U = 0 ,  the energy of turbulent fluctuations decreases. Turbulence develops, 
on the other hand, in regions where the velocity gradient of the average motion 
is not zero. 

If, when averaging, terms of the order of ui uj uk are neglected, it follows from 
(1) that 

Here, functions bpi = pUi are eliminated by the condition of incompressibility. 
Equation (2) corresponds to a linear approximation in (1) for the function 

u(x, t ) .  Later, in $2,  a non-linear theory describing development of fluctuations 
with a finite amplitude is described. 

We turn now to the case when the flow is non-uniform but initial disturbances 
are such that the maximum turbulence scale I is less than the characteristic scale 
of the averaged flow L. Fluctuations u(x,t) are rapidly changing functions of 
x, t ;  averaged velocities U(x, t )  change slowly. Therefore the function 

bij(x, x', t )  = dij(x - x', &(x + x'), t )  

changes rapidly depending on x - x' and slowly depending on &(x + x') ; when 
Ix - x'I -+ co the function bij(x, x', t )  quickly approaches zero. In  this case it may 
be considered that the tensor bij(x, x', t)  depends on the vector x - X' and the 
tensor aC$/ax, alone. 
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Actually, transforming (2) t o  new variables r = x - X ’  and y = i(x + x’) and 
retaining only the first derivatives with respect to the co-ordinates of the slowly 
changing functions U ( x ,  t ) ,  we obtain 

We shall introduce the spectral tensor 

which depends on the co-ordinates x not explicitly, but through slowly varying 
functions U ( x , t )  (Hasen 1962). 

Then it follows from ( 2 )  that 

We shall consider the plane parallel flow U(x, t )  where 

u, = ul(x2), au,/ax, = p+ 0,  u2 = u, = o 
(the axis x1 is directed along the flow, and the axis x2 across it). In  this case 
equations (6) are simplified. The solution is of the form 

x exp { - 2v[k2t + k, k, p t 2  + + k : p z t 3 ] } .  ( 7 )  
For a plane flow we have 

4512 = - ( W k J  $221 $12 = 45211 $11 = ( k 2 / k J 2  4522- (8 )  

Here, $$ are values of the functions at t = 0. When U = 0, which corresponds to 
homogeneous and isotropic turbulence, and #$j = (Sij k2 - ki kj)? the solution 
(7)-(8) becomes the well-known expression of Millionshchikov (1939, 1941). The 
fluctuation energy is 

#ig(k, t )  dk = E l ( t )  + e,(t)  + ~ 3 ( t ) .  (9) 

For an initial wavy disturbance which is periodic in the direction of the flow 

&(k) = A i j [ a ( k l -  a )  + a(k,+ a)] a(k,) a(k3). (10) 
we have 

In this case, (7) and (8) show that the energy of the disturbance decreases 
monotonically as t grows. Thus in a flow with a constant shear, such an initial 
wavy disturbance decreases monotonically. For the more general initial 
disturbance 

#&(k) = A(~kdjk2-kkdk~)[6(k-k,)+6(k+k,)], (11) 
46-2 
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where k, = (k,, k2) ,  we obtain from (6) when v = 0: 

However, equations (7) and (8) show that there exist initial disturbances for 
which fluctuation energy starts to grow with t and increases in a finite time 
interval for a fixed local Reynolds number R = PZ2/lv; moreover, as R increases, 
the maximum ratio max ~ ( t ) / e ( O )  becomes larger than any prescribed value. 

In fact for eddy disturbances consisting of eddies of the type 

located at random in the plane (x,, x2), we have 

O k 1 - - A(& k2 - kt k j )  e--kzla2. (15) 

From (7), (9), (15), using dimensionless variables t* = Pt, k* = kl = k / a  (it is 
natural to take l /a  as the scale of initial turbulent disturbances Z), we obtain 
(Hasen 1962) 

x exp { - (2/R) (t*k*2 + t*2k: k$ + + t * 3 k 3 }  dk*, (16) 

where Q(t*) is the region prescribed by the inequalities 

Ik$+kTt*] G g, IkfI d +, G g. 
Let M be any prescribed value. When t* < N ( M )  and R > N 3 ( M ) ,  we have for all 
k* in Q(t*) the inequality 

exp { - (2/R) (t*k*2+ t*2kf kz + + t * 3 k 3 }  > 4. 

Hence 

Evaluating integral (17) first with respect to k: and then with respect to kT 
(with icz replaced in the numerator by zero, and by unity in the denominator), 
we find 

(18) s(0) 39( 1 + $t*2) 

when t* < N ( M ) ,  R > N3(M) .  Having chosen N ( M )  = 2 J(39M), we find that at 
,/(39M) < t* < 2,,/(39M) and R > 8(39M)%, the relation s(t*)/s(O) > M is fulfilled. 

t"4  €0 > 
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Thus, no matter how large M is, a Reynolds number R = & ( M )  may be always 
found such that when .J(39M) < t < 2 .J(39M) the energy of infinitesimal initial 
eddies has increased more than M times. Here, however, the amplitude of finite, 
although initially small, fluctuations may be out of the region of linear approxi- 
mation for u(x, t )  and (7)-(8) cease to be valid. In  order to trace further develop- 
ment of fluctuations, it  is necessary to analyse non-linear equations for u(x, t ) .  
The results of such an analysis, which is made in the subsequent section, show 
that the energy of turbulent fluctuations does not decay if the maximum 
fluctuation energy at the initial stage of turbulence development is out of the 
region of linear approximation. However, if the initial amplitude of fluctuations 
is sufficiently small, so that the highest possible amplitude is within the region of 
linear approximation, then fluctuations decay when t + co, energy exchange and 
generation of fluctuations of different scales being absent. 

Thus the shear flow is stable with respect to sufficiently small eddies, but the 
height of ‘stability barrier’ for the initial amplitude of eddies approaches zero as 
R grows. 

2. A non-linear theory of turbulence onset 
We shall consider the further development of turbulent fluctuations in a flow 

with a uniform profile of the mean flow aUl/ax, = /3, in the case of a, finite value of 
the initial amplitude. 

We shall apply the Fourier transformation to the fluctuation velocity 

Eliminating the pressure from the Navier-Stokes equations by means of the 
incompressibility condition, we obtain the following equation for a( k, t )  : 

a.iii(k, t )  aiii kl  ki pk - +psi, 4, + Vk2Qi - 2/3 - 4, at ak, k2 
~- 

- i  - --6. , ,)S_,Ok~~(k’,t).ii~(k-k’,t)dk’. (20) 

We shall consider a two-dimensional flow, B = (C1(kl, k,, t ) ,  G,(kl, k,, t ) ) .  In  this 
case from the compressibility condition k, 4, + k, 4, = 0 we find, for some @, 

41 = - k,?Irfkl, k2, t ) ,  Q, = k,$(k,, k,,t). (211 

Then from (20) and (21), the non-linear equation for @(k,, Ic,, t )  follows: 

i “  
k2 --m 

= -s (k2k;-k1&) (k ,k;+k,k; )$(k’ , t )$(k-k’ , t )dk‘ .  (22)  

We shall consider the solution of (22) with an initial condition 

$(k, 0) = (A/a2)  exp ( -  k2/a2), (23) 



726 E. M .  Ha.sen 

that corresponds to initial vortices. We assume @(k,  t )  = D(k,  t )  + iB(k, t ) ,  intro- 
duce the dimensionless Reynolds number R = /3/a2v and transfer to dimensionless 
variables k* = k / a ;  t* = pt; A* = Aa//3. When the value of A* is fixed, the 
Reynolds number may increase due to decrease of the viscosity. The asterisk in 
t* and k* will be omitted in the subsequent portion. 

We shall solve equation (22) with the initial condition (23) by the method of 
successive approximations. As the first (linear) approximation we have 

exp [ - k: - (k, + k, t)zJ k; + k; 
x e x p { - ( 1 / R ) ( k 2 t + k 1 k 2 t 2 + + k ~ t 3 ) } ,  Bl(k, t )  = 0. (24) 

We denote D,(k, t )  = A* G,(k, t ) .  The solution is expressed as a series in powers 
of A*: 

(25 ) +(k, t )  = 5 [Dn(k, t )  + iBn(k, t ) ~ ,  
n=l 

where the functions D,(k, t ) ,  B,(k, t )  for .n 2 2 are the solutions of the following 
equations: 

aB,(k,t) ~- k 1 G + - - 2 L 2 B ,  823, kzBn L k = 
at R k2 

with the initial conditions 

Dn(k, 0 )  = Bn(k, 0 )  = 0 (n 2 2). ( 2 8 )  

We have seen that Bl(k , t )  = 0 and Dl(k , t )  is defined by formula (24); 
equations (26) and (27) give D,,(k,t) = 0 ,  B2,+l(k,t) = 0. We shall estimate 
(D2,+,(k, t ) l ,  /B,,(k, t )  1. The following Iemmas are basic for the estimation of 
these functions. 

Lemma 1. Consider the integral 

1 P m  

When t 

lyl(kl, k,, t)l N exp { - &[k2, + (k, + kl tl2I - (1/2R) [k2t + k1k2 t2 + k4t3/31} 

R)  const., yl(kl, k,, t )  is estimated as 

p+(k2fk1t)2]2E lk,k,+terms of lower order withrespect to t ,  k,l, (30) 
k2tY 

X 
k; + k; 

where E = i, y = $fort N Rfr and e = 2, y = 3 fort N R. Similarly for the integrals 
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where 1 is an integer with 1 < 1 < n and 

r+ (k, + k, t)2]n Re 
- Ik k terms of lower power with respect to t ,  k,l, k2tr 1 2 +  

X 
k:: + IC; -~ 

(32 )  
where e = 4, y = 8 for t N R) and e = 2,  y = 3 for t N R. 

The proof of lemma 1 is based on the fact that as t -+ KI 

exp { - 2(k; - 4k,)2t3/3R) G- j ( 3 r R / 2 t s )  6(ki- 
(33 )  exp { - 2(k;1- &k2)2t/R) a j(n-R/2t) S(ki - @,). lk );I 

The integrals (31 ) ,  (29 )  may be 'cut', i.e. estimated by integrals over the region 

Jk; - @,I < 3 J(3R/2t3) ;  Iki- &%,I < min ( 3 ;  3 j ( R / 2 t ) ) .  (34 )  

As t increases, this region becomes narrower with respect to k; more rapidly 
than with respect to k;. Estimation of integrals (31 ) ,  (29 )  over the region (34 )  
(for t 2 R6const.) first with respect to k; and then to k;l (where the function 
G , ( k )  G,-,(k- k') near the point k; = +kl,  k; = 4k2 is expanded in a Taylor 
series) yields the estimates (32)' (30 ) .  The integral over the region external to (34 )  
gives the terms of lower order with respect to t ,  k, which are referred to in ex- 
pressions (32 ) ,  (30 ) .  

Lemma 2 .  Consider the solution of the non-uniform linear equation 

with the initial condition B(k;  0) = 0. 
Then the following estimate for the solution is valid for t e [0, to] (to N R4): 

where C,, C, = const. 
Lemma 2 is verified directly by integration of (35 ) .  
Lemma 3 .  Signs of the terms of higher order with respect to t in the functions 

D,,+,(k, t ) ,  B,,(k, t )  alter in the following way: 

D2m+l N ( -  l)y B,, N ( -  lp (m=O, 1 , 2 , 3 ,  ...). (36 )  

Because of this fact, all these terms enter into the sum in the right-hand side of 
equations (26 ) ,  ( 2 7 )  with the same signs. 
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Lemma 3 is proved by the method of mathematical induction, 
From lemmas 1, 2, 3, we deduce lemma 4. 
Lemma 4. For the terms of highest order with respect to t in the functions 

B,,(k, t ) ,  Dzm+l(k, t ) ,  the following estimations hold when t R )  const.: 

where e = i, y = 8 fort  N R* and e = 2, y = 3 fort N R ;  K = const. When t - Rg, 
we have 

IDzm+l(k, t)l 
const 1 (t4K)Zm 

= G2,+,(k, t )  A"(A"R4)'m - +terms of lower power with respect to t . 

Now consider $(k,  t )  dk that is connected with the energy of turbulent 
S Y - m  

disturbances. Then for t N Rf 

--m Dzm+,(k,t)dkl A * ( 8 * g ) 2 m t 4 m ;  

R$ 2m-1 11" --m B,,(k,t)dkl N A*@*=) t4m-z. 

(39) 

Deduction of these estimations is the same as for energy e( t )  in the linear theory 
of $ 1  of this paper. 

From (39) and (40) it is evident that for t N R*, the energy of disturbances 
remains finite and tends to zero as t increases, if A* < K,/R+, and becomes 
infinite for finite time t N RS if A* > K,/R$ (where K,, K ,  = const.). 

From the above we may conclude that there exists a 'stability barrier' A*(R), 

(41) 
where 

for the initial amplitude A of turbulent fluctuations. It should be such a quantity 
that if A < (B/a)Lif*(R), fluctuations decay as t - f c o ,  and if A > (P/a)A"*(R), 
fluctuations (in a free stream with a constant mean shear) grow and their energy 
does not decrease. As R -+ co the 'stability barrier J*(R) becomes zero. 

We shall analyse the non-linear mechanism which prevents turbulence from 
decay. If the initial conditions are given in the form 

Kz/R% G J*(R) G K,/R% 

$(k,  0) = S(k - ko) + a(k + ko), (42) 

corresponding to a plane wave with the wave vector ko, then the solution of (22) 
will include all waves which are integral multiples of ko. If 

(43) $(k,  0) = 6(k - k,) + 6(k + k,) + S(k - k,) + S(k + k,),  

corresponding to two plane waves with wave vectors k,, k,, then all waves arise 
with the wave vectors nk,; mk,; nk,-mk,; n ,m = & 1, & 2 , .  ... In this case 
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fluctuations of a larger scale, in addition to fluctuations of a smaller scale, appear 
in the course of time. The former take their energy from the gradient of the mean 
flow and transmit it to the fluctuations of small scale that are generated by them. 
If k, and k, are parallel but not commensurable, then waves are excited whose 
wave vectors form a dense set. 

When we consider the interaction o€‘ a finite number of waves, the problem is 
the solution of a system of ordinary differential equations of the first order. 

Both the solutions of (22) and those of the set of equations for spectral tensors 
of turbulent fluctuations, including the higher moments (Hasen 1962, 1963), are 
similar. 

The present mechanism of turbulence onset from small eddies in shear flows 
with + 0 is universal, since in an incompressible fluid any velocity field contains 
an eddy component and in the regions where turbulence develops the shear is 
non-zero. 

The conclusions agree with the reported experimental data on the turbulence 
onset: they give an explanation of the phenomenon of delay in transition to a 
turbulent flow, i.e. of the increase of the Reynolds number for transition to a 
turbulent flow when the level of disturbances to a laminar flow decreases. 
Turbulent ‘spots’ and the intermittent character of turbulence onset may be 
explained by the fact that energy of random small initial turbulent fluctuations 
at a certain Reynolds number is large enough not at all points simultaneously, 
but in some places located at random. In these places, ‘turbulent spots’ appear 
and (as agrees well with the present theory) when the Reynolds number grows 
or the level of disturbances in the flow increases, the sizes and number of such 
spots rise. Since the initial level of disturbance to the flow cannot be infinitesimal, 
infinite delay of transition to a turbulent flow is impossible. 

Admittedly the real situation is still more complicated than that analysed in 
this paper, since the disturbances are three-dimensional. It is interesting, 
however, that the above qualitative conclusions can be deduced even if purely 
two-dimensional disturbances are assumed. 
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